
This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Laub, R. J.(1984) 'Solute Retention in Column Liquid Chromatography. III. Computer Optimization of Mobile-Phase Compositions: Program Window', Journal of Liquid Chromatography & Related Technologies, 7: 4, 647 – 660

To link to this Article: DOI: 10.1080/01483918408073993 URL: http://dx.doi.org/10.1080/01483918408073993

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SOLUTE RETENTION IN COLUMN LIQUID CHROMATOGRAPHY. III. COMPUTER OPTIMIZATION OF MOBILE-PHASE COMPOSITIONS: PROGRAM WINDOW

R. J. Laub

Department of Chemistry San Diego State University San Diego, CA 92182

ABSTRACT

A program is described that calculates solute retentions (thence optimized conditions for their separation) from data acquired solely from chromatographic measurements. A pre-sorting loop identifies the relevant (window-diagram boundary) pairs of solutes within a user-defined value of the most-difficult separation factor, S_{f} . The program run time is consequently shortened by several factors over previously-used "brute-force" techniques wherein all possible pairs are considered at each value of the independent parameter(s) to be optimized. The required CPU space reserved for arrays is thereby also diminished. The program was written for an APPLE II Plus system; statements not compatible with other versions of BASIC are pointed out and discussed.

INTRODUCTION

The major drawback to chromatographic separations in general is that it is impossible at the present time to predict on an a priori basis the precise set of conditions which will effect resolution of the mixture at hand. As a result, a number of optimization strategies have been proferred over the years, these including SIMPLEX (1) and the Laub-Purnell windowdiagram strategy (2,3). The former makes use of what amounts to an intelligent yet near-random search for the **single** optimum of the parameter

Copyright © 1984 by Marcel Dekker, Inc.

0148-3919/84/0704-0647\$3.50/0

of interest and is hence subject to local minima. In contrast, the latter defines pictorially the **global set** of optima; it is then left to the user to superpose additional local criteria (such as analysis time, cost, and so forth). The overall **practical** optimum is then determined simply by inspection of the global set.

A number of requests have been received for the global optimization algorithm presented in a recent technical report by Laub (4) and so, the computer program is presented here in detail.

THEORY

The independent variable most frequently employed in optimizing column liquid-chromatographic separations is the composition of the mobile phase. As a result, there have been formulated over the years a number of relations which purport to describe solute retentions as a function of mobile-phase solvent/additive ratio in terms of mole-, weight-, or volume-fraction or molar or molal concentration. The most successful of these is that by McCann, Purnell, and Wellington (5), followed by Madden, McCann, Purnell, and Wellington (6), as described in the previous two papers. They modified the relation first proposed by Scott and Kucera (7) such that all isotherm shapes common to 1c could be represented. The result, for which no exception is known at this time, can be expressed in terms of raw retentions with a given column and fixed flow rate as:

$$\frac{1}{t_{R(M)}} = \phi_{A} \left\{ \frac{1}{t_{R(A)}} + \frac{b\phi_{S}}{1 + b\phi_{S}} \right\} + \frac{\phi_{S}}{t_{R(S)}}$$
(1)

where values of b and b' are derived from an analysis of the experimental data.

The fitted parameters have yet to be rationalized either from one solute to the next or from one solvent system to another. Nevertheless, the ability to represent generally (hence predict) the variation of solute retentions as a well-defined function of mobile-phase composition represents a very considerable advance since relative retentions (i.e.,

648

separations) can then be reduced also to a mathematical formulation. The two relevant equations are:

$$a_{i/j} = \frac{\frac{t_{R}(M) i}{t_{R}(M) j}}{(M) j}$$
(2)

$$S_{f} = \frac{2R_{s}}{N^{\frac{1}{2}}} = \frac{t_{R}(M) i - t_{R}(M) j}{t_{R}(M) i + t_{R}(M) j}$$
(3)

where $a_{i/j}$ and S_f are referred to here as the alpha value and the separation factor, and where R_s and N are the resolution and number of theoretical plates. The latter expression, derived initially by Jones and Wellington (8), has some advantage in practice (see preceding paper) since t_R represents a **raw** retention time, i.e., uncorrected for column void space. Thus, the dead time t_A (or peak baseline or half-height widths) need not be determined. In addition, for R_s set to unity (4 σ separation), the number of plates required N_{req} to effect a separation is calculable directly as $(2/S_f)^2$. In contrast, capacity factors or adjusted retention times (hence t_A) must be known in order to do so with values of alpha, where (9):

$$N_{eff} = 16 \left(\frac{a}{a-1}\right)^2 \left(\frac{k'+1}{k'}\right)^2$$
(4)

and where N and N_{req} are related by:

$$N_{eff} = N \left(\frac{k'}{k'+1}\right)^2$$
(5)

Eqn. 3 is therefore used in what follows.

When the separation factors of the relevant pairs of solutes (see later) are plotted graphically against the independent parameter (here, mobile-phase composition), the result (window diagram) resembles a set of inverted and partially-overlapped triangles. A perpendicular dropped to the abscissa from the point of the tallest open region (window) formed by the intersection of the sides of two of these triangles (or one triangle with an ordinate) then specifies the optimum mobile-phase composition. A horizontal line from the top of the window to the left-hand ordinate subsequently yields the most-difficult separation factor (all others are easier). The number of plates (hence the column efficiency) required to effect the separation can then be calculated. Reference back to eqn. 1 also provides the order of elution of the solutes at the chosen optimum (10).

PROGRAM DESCRIPTION

In the program that follows, it is assumed that the liquid-chromatographic separation of solutes is to be optimized in terms of mobile-phase composition in accordance with eqns. 1 and 3. Substitution of appropriate functions for other variables, such as $\log(t_{R(M)})$ against T^{-1} , could of course also be appended (11,12). For the sake of clarity, the program statements have not in many instances been concatenated where it would otherwise be possible (and even beneficial) to do so and, for the same reason, potential savings in execution time are sacrificed in favor of presentation of the logic in expanded form.

Data Input (Statements 1999-1299)

1øøø	REM DATA INPUT INPUT THE SOLVENT AND SOLUTE
	NAMES, AND THE RESPECTIVE RETENTIONS. THEN DISPLAY
	THESE VALUES.
1Ø1Ø	HOME : $PR#\emptyset$: DIM N\$(51), A(51), S(51), B1(51), B2(51), X(5 \emptyset \emptyset),
	Y(5ØØ), M\$(5ØØ)
1ø2ø	PRINT : PRINT : PRINT : PRINT : PRINT : PRINT
1ø3ø	PRINT "SOLVENT 'A' IS: ";
1Ø4Ø	INPUT A\$
1ø5ø	PRINT : PRINT
1ø6ø	PRINT "SOLVENT 'S' IS: ";
1ø7ø	INPUT S\$
1Ø8Ø	PRINT : PRINT
1090	PRINT "THE NUMBER OF SOLUTES (MAXIMUM OF 50) IS: ":
1100	INPUT N
111Ø	HOME
112Ø	PRINT : PRINT
113Ø	PRINT "ENTER THE RESPECTIVE SOLUTE NAMES AND
	RETENTIONS WITH SOLVENTS 'A' AND 'S' "
1140	PRINT : PRINT
115Ø	PRINT "SOLUTE NAME, TR(A), TR(S), B1, AND B2"; PRINT
· · · · F	

116Ø	FOR I = \emptyset TO N - 1: INPUT N\$(I), A(I), S(I), B1(I), B2(I): NEXT I
1165	HOME : PRINT : PRINT : PRINT : PRINT
117Ø	PRINT "THE LOWER MOBILE-PHASE COMPOSITION PERCENT
	TO BE CONSIDERED IS (WHOLE NUMBER) ";
1175	INPUT DL
118Ø	PRINT : PRINT "THE UPPER MOBILE-PHASE COMPOSITION
	PERCENT TO BE CONSIDERED IS (WHOLE NUMBER) ";
1185	INPUT DU
1190 PRINT : PRINT "THE MOBILE-PHASE COMPOSITION PERC	PRINT : PRINT "THE MOBILE-PHASE COMPOSITION PERCENT
	INTERVAL TO BE CONSIDERED IS (WHOLE NUMBER; SMALLEST
	PERMISSIBLE IS 1%) ";

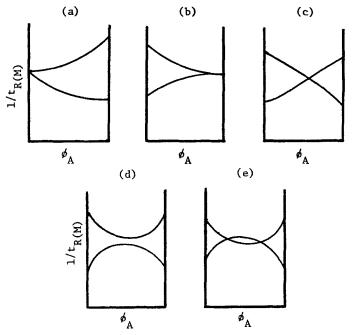
1200 INPUT D

Data Verification (Statements 121\$-137\$)

DETERMINED."

121Ø	PR#1	
122Ø	PRINT : PRINT	
123Ø	PRINT TAB(26); "*****RETENTION DATA*****"	
124Ø	PRINT : PRINT	
125Ø	PRINT TAB(5); "SOLVENT 'A' IS "; A\$	
1260	PRINT TAB(5); "SOLVENT 'S' IS "; S\$	
127Ø	PRINT : PRINT	
128Ø	PRINT TAB(5); "SOLUTE"; TAB(2Ø); "TR(A)"; TAB(35); "TR(S)"	
	TAB(52); "B1"; TAB(27); "B2"	
129Ø	PRINT	
13ØØ	FOR $I = \emptyset$ TO N - 1	
1310	PRINT TAB(5); LEFT\$ (N\$(I),10); TAB(20); A(I); TAB(35); S(I);	
-	TAB(5Ø); B1(I); TAB(55); B2(I): NEXT I	
133Ø	PRINT : PRINT : HOME	
134Ø	PRINT "MIXTURES OF 'A' WITH 'S' WILL BE CONSIDERED AT	
	EVERY "; D; "% FROM 'A' = "; DL; " TO "; DU; "%."	
135Ø	PRINT : PR#Ø: PRINT : PRINT : PRINT : PRINT : PRINT	
1360	PRINT "FIRST, HOWEVER, THE RELEVANT PAIRS OF SOLUTES	
	FOR CALCULATION OF THE WINDOW DIAGRAM WILL BE	

The solute and solvent data are printed out on the hard-copy device PR#1. The program uses a simple loop $(13\emptyset\emptyset,131\emptyset)$ to do so after the title $(123\emptyset)$ and column headings $(128\emptyset)$ are printed. Note that the solute names are contained as strings in the array N\$(I), and that the retentions with solvents A and S (named A\$ and S\$) are in the arrays A(I) and S(I), respectively.


Determination of Relevant Pairs of Solutes (Statements 1599-1989)

- 1500 REM THIS SECTION OF THE PROGRAM WILL DETERMINE THE RELEVANT PAIRS OF SOLUTES FOR CALCULATION OF THE WINDOW-DIAGRAM ARRAY.
- 1510 PRINT : PRINT : PRINT
- 1520 PRINT "ENTER THE UPPER LIMIT OF SEPARATION FACTOR (>0) TO BE CONSIDERED: ";
- 153Ø INPUT MAX
- $154\emptyset \quad \mathbf{Z} = \emptyset$
- 155Ø Z1 = Ø
- 1560 FOR J = 0 TO N 2
- 1580 HOME : PRINT : PRINT : PRINT : PRINT "THE NUMBER OF RELEVANT PAIRS": PRINT : PRINT : PRINT "FOUND SO FAR IS :";21
- 1620 FOR I = J + 1 TO N 1
- 167Ø LP = (A(I) A(J))/(A(I) + A(J))
- 1680 IF (ABS(LP)) < MAX THEN GOTO 1730
- $169\emptyset$ LQ = (S(I) S(J))/(S(I) + S(J))
- 1710 IF (ABS(LQ)) > MAX THEN IF (LP/LQ) > Ø THEN GOTO 4000
 - 4000 FOR P = DL TO DU STEP D
 - $4\emptyset 2\emptyset$ COMP = P * $\emptyset.\emptyset 1$
 - 4030 L1 = COMP * ((1/A(I)) + (B1(I) * (1 COMP)/(1 + B2(I) * (1 COMP)))) + (1 COMP)/S(I)
 - 4040 L2 = COMP * ((1/A(J)) + (B1(J) * (1 COMP)/(1 + B2(J) * (1 COMP))) + (1 COMP)/S(J)
 - 4050 SF = (L1 L2)/(L1 + L2)
 - 4060 IF (ABS(SF)) > MAX THEN GOTO 4080
 - 4Ø7Ø GOTO 173Ø
 - 4080 NEXTP
 - 4090 GOTO 1850
- $173\emptyset$ Z1 = Z1 + 1
- 174Ø HOME: PRINT: PRINT: PRINT: PRINT: PRINT "THE NUMBER OF RELEVANT PAIRS": PRINT: PRINT: PRINT "FOUND SO FAR IS:"; Z1: FOR PAUSE = 1 TO 1ØØ: NEXT PAUSE
 175Ø K = J
- 1760 FOR Z = Z TO (Z + 1)
- $177\emptyset$ X(Z) = A(K)

1775	Y(Z) = S(K)
178Ø	M1(Z) = B1(K)
1785	M2(Z) = B2(K)
179Ø	$M_{Z} = N_{K}$
1795	K = I
18ØØ	NEXT Z
185Ø	NEXT I
19ØØ	NEXT J
19Ø5	IF $Z1 = \emptyset$ THEN GOTO $33\emptyset\emptyset$
191Ø	HOME : PR#1 : PRINT : PRINT
1915	PRINT TAB(26); "************************************
192Ø	PRINT : PRINT : PRINT TAB(5); "THE NUMBER OF RELEVANT
	PAIRS OF SOLUTES IS "; Z1; "."
193Ø	PRINT : PRINT
194Ø	PRINT TAB(5); "THE RELEVANT PAIRS ARE:" : PRINT
196Ø	FOR $Z = \emptyset$ TO (Z1 * 2 - 1) STEP 2
197Ø	PRINT TAB(15); (LEFT\$ $(M$(Z),1\emptyset)$); "/"; (LEFT\$ $(M$(Z + 1),1\emptyset)$)
•.	

```
198Ø NEXT Z
```

Rather than calculating the separation factors for all pairs of solutes at all compositions, the program first determines the number and identity of pairs of solutes that have values of S_f less than the user-defined limit MAX at some point within the specified composition range of DL to DU% of A in (A + S). The task is straight-forward when the variation of solute retentions is known as a function of column composition. Five situations arise generally:

In situations (a) and (b), full overlap of the solutes occurs at one or the other of the ordinates. S_f is therefore \emptyset at each of these points. In the third case, (c), the order of elution of the solutes is reversed on passing from one extremum to the other. Hence, while S_f is greater (or less) than \emptyset at one ordinate, it will be less (or greater) than \emptyset at the other. Finally, situations (d) and (e) encompass those instances where the curves do not intersect at any or at more than one composition. These can be identified only by examination of the solute retentions at intermediate mobile-phase compositions.

In order to test for each of the above possibilities (hence identify the relevant pairs), the separation factors for each solute pair are calculated at each of the ordinates $(154\emptyset-19\emptyset\emptyset)$ and, where necessary, at intermediate compositions (subroutine $4\emptyset\emptyset\emptyset-4\emptyset9\emptyset$). First, however, and following a displayed message so indicating, the user is prompted to enter the upper limit of S_f which will be used to define what constitutes a relevant pair. Judicious choice of the limiting separation factor can lead to an enormous savings in the time of calculation of the window boundary, since whatever pairs are eliminated at this point will not be considered again. (An S_f of $\emptyset.\emptyset2828$ corresponds to a column of $5\emptyset\emptyset\emptyset$ plates and minimum resolution R_s of unity.) If **no** relevant pairs are found, the program branches at 19 \emptyset 5 to statement 33 $\emptyset\emptyset$ and displays a mesage so informing the user:

33ØØ	HOME : PRINT : PRINT : PRINT : PRINT : PRINT : PRINT "NO		
	PAIRS FOUND- ALL COMPOSITIONS WILL PROVIDE GOOD		
RESOLUTION. WANT TO TRY A HIGHER VALUE OF SF (Y/N			
	INPUT ANS\$		
331Ø	IF ANS\$ = "N" THEN GOTO 327Ø		
332Ø	PRINT : PRINT : PRINT : GOTO 1520		

The final task of this section of the program $(191\emptyset-198\emptyset)$ gives a hard-copy print-out of the number and identity of the relevant pairs of solutes.

Calculation of the Window Boundary Array (Statements 3000-3200)

3000 REM THIS SECTION OF THE PROGRAM CALCULATES THE WINDOW DIAGRAM ARRAY, HERE, SF AS A FUNCTION OF

	MOBILE-PHASE COMPOSITION FOR LIQUID CHROMATOG- RAPHY.				
3010					
3Ø2Ø					
3040	DIM Q\$(101), R\$(101), SFP(101)				
	$BSFP = \emptyset$				
	FOR P = DL TO DU STEP D				
3ø5ø	HOME : PRINT				
3ø6ø	PRINT "THE COLUMN COMPOSITION CURRENTLY BEING":				
	PRINT : PRINT "CONSIDERED IS "; P; "%"				
3Ø7Ø	SFP(P) = MAX				
3075	$COMP = P * \emptyset.\emptyset1$				
3080	Q\$(P) = "(NONE)"				
3Ø85	R\$(P) = "(NONE)"				
31ØØ	FOR $Z = \emptyset$ TO (Z1 * 2 - 1) STEP 2				
311Ø	L1 = COMP * ((1/X(Z)) + (M1(Z) * (1 - COMP)/(1 + M2(Z) * (1 - COMP))))				
	COMP)))) + (1 - COMP)/Y(Z)				
3115	L2 = COMP * ((1/X(Z + 1)) + (M1(Z + 1) * (1 - COMP)/(1 + M2(Z + 1))))				
	* (1 - COMP)))) + (1 - COMP)/Y(Z + 1)				
312Ø	SF = (L1 - L2)/(L1 + L2)				
3125	IF $(ABS(SF)) > SFP(P)$ THEN GOTO 3170				
313Ø	SFP(P) = ABS(SF)				
314ø	Q\$(P) = M\$(Z): R\$(P) = M\$(Z + 1)				
317Ø	NEXT Z				
3175	IF SFP(P) < BSFP THEN GOTO 3200				
318Ø	BSFP = SFP(P)				
3185	BA\$ = Q\$(P)				
319Ø	BS\$ = R\$(P)				
3195	OPT = P				
3200	NEXT P				

Once the relevant pairs of solutes have been identified, separation factors for each are calculated in turn at each column composition and the lowest (most-difficult) is saved in the array subscripted as P. Thus, SFP(P) (313 \emptyset) is the most-difficult (window-boundary) value of S_f at the column composition corresponding to P, while solutes Q\$(P) and R\$(P) (314 \emptyset) are the names of the solutes. The **overall best** value of SFP(P), BSFP (318 \emptyset), is updated on each pass through the outer loop, as are the names of the corresponding most-difficult solutes, BA\$ (3185) and BS\$ (319 \emptyset). The **overall best** (optimum) column composition is also stored (3195) as OPT.

This section of the program is by far the slowest, the rate-limiting statements being 3110 and 3115. To indicate that the computer is still working (and to time the program if desired), the composition currently being considered is displayed.

LAUB

SFP(P), Q(P), and R(P) default (3070,3080,3085) to the value of MAX and the string "(NONE)" if, at a given column composition, the separation factors of all relevant pairs of solutes exceed that of MAX (see later).

Data Output (Statements 32#5-329#)

32Ø5	PR#1	
321Ø	HOME : PRINT : PRINT : PRINT TAB(5); "THE WINDOW-	
	BOUNDARY DATA ARE:"	
3215	PRINT : PRINT	
322Ø	PRINT TAB(11); "SOLUTE"; TAB(36); "COL."; TAB(57); "SEPN."	
3225	PRINT TAB(12); " PAIR"; TAB(36); "COMP."; TAB(16); "FACTOR"	
323Ø	PRINT : PRINT	
3235	FOR $P = DL$ TO DU STEP D	
3240	PRINT TAB(5); LEFT\$ (Q\$(P),10); "/"; LEFT\$ (R\$(P),10); TAB(37);	
0-10	P; TAB(54); (INT($10 \land 5 * (SFP(P)) + 0.02$))/ $10 \land 5$	
3245	NEXT P	
3250	HOME : PRINT : PRINT	
3255	PRINT "THE BEST COLUMN COMPOSITION IS: "; OPT; "%."	
3260	PRINT : PRINT "THE MOST-DIFFICULT SEPARATION FACTOR	
3200	AT THIS COMPOSITION IS: "; BSFP; "."	
3265	PRINT : PRINT "THE MOST DIFFICULT SOLUTES TO SEPARATE	
3605	AT THIS COMPOSITION ARE: "; BA\$; " FROM "; BS\$; "."	
2270		
327Ø	PR#Ø	
3275	PRINT :	
	PRINT : PRINT TAB(1Ø); "*****THAT'S ALL, FOLKS*****"	
329Ø	END	

A hard-copy print-out of the window-boundary array is accomplished by the loop, 3235-3245. For easier reading, the separation-factor data are truncated (3249) to five places. If at a given column composition the separation factors of all relevant pairs exceed the value of MAX, the solute-pair print-out is (NONE)/(NONE) and the separation factor printed is MAX. (A plot of the data in this composition region thus would show a flat top.) Also printed out (3255-3265) are the overall best column composition, the most-difficult S_f at this composition, and the associated (most-difficult) solute pair.

656

Generalization of the Algorithm

The program as written considers that inverse retentions vary in a non-linear fashion with mobile-phase composition. If the regression is in fact linear, eqn. 1 reduces to the trivial form:

$$\frac{1}{t_{R(M)}} = \phi_{A}\left(\frac{1}{t_{R(A)}}\right) + \phi_{S}\left(\frac{1}{t_{R(S)}}\right)$$
(6)

That is, both b and b' are negligible. The program and data entry procedure need not be modified in this instance other than to enter \emptyset when asked for values of B1 and B2.

The terms $(1/t_{R(i)})$ (i = A, S, or M) could of course also be used to represent ordinate data from some other function which may or may not be linear. For example, the (linear) diachoric solutions relation pertinent to retentions in gas chromatography is (13,14):

$$K_{R(M)}^{o} = \phi_{A} K_{R(A)}^{o} + \phi_{S} K_{R(S)}^{o}$$
 (7)

where $K_{R(i)}^{0}$ are solute liquid-gas partition coefficients with the stationary phases A, S, and M (= A + S). To utilize the program, in this instance for optimization of the stationary-phase composition, \emptyset would be entered for B1 and B2, and $1/K_{R(i)}^{0}$ entered for " $t_{R(i)}$ ". Eqns. 6 and 7 would thereby be made equivalent. However, the value of " S_{f} " thence calculated would no longer be equal to $2R_{g}/N^{\frac{1}{2}}$ unless it were true that the sum of the raw retentions were much larger than twice the average of the column dead times:

$$\frac{K_{R}^{O}(M)2 - K_{R}^{O}(M)1}{K_{R}^{O}(M)2 + K_{R}^{O}(M)1} = \frac{t_{R}(M)2 - t_{R}(M)1}{t_{R}(M)2 + t_{R}(M)1 - 2t_{A}}$$
(8)

Fortunately, this can be expected to be the case more often than not in open-tubular column gc, and will certainly be true for conventional packedcolumn gas chromatography. In contrast, suppose that for some reason or another a particular liquid-chromatographic system were represented by the relation (cf. eqn. 1 of preceding paper):

$$\log k'_{(M)} = \log k'_{(S)} - S \phi_A \tag{9}$$

where S is an empirical constant and where it is assumed that t_A can be determined unambiguously. In order to identify the appropriate quantities for " $t_{R(A)}$ " and " $t_{R(S)}$ ", eqn. 6 is rearranged to the form:

$$\frac{1}{t_{R}(M)} = \frac{1}{t_{R}(S)} - \phi_{A} \left(\frac{1}{t_{R}(S)} - \frac{1}{t_{R}(A)} \right)$$
(10)

Comparison of coefficients hence yields the identities:

$$"t_{R(S)}" = \frac{1}{\log k'(S)}$$
(11a)

$$"t_{R(A)}" = \frac{1}{\log k'(S) - S}$$
(11b)

Entry of these values for $"t_{R(A)}"$ and $"t_{R(S)}"$ would then yield a separation factor defined by:

$$10^{S} f + k'_{(M)1} k'_{(M)2} = \frac{k'_{(M)1}}{k'_{(M)2}} = \alpha_{1/2}$$
(12)

for which a program statement could easily be added to retrieve the correct window-diagram boundary, here, alpha as a function of mobilephase composition.

In the cases considered above, it was assumed that the example relations were linear. If this were not so, the program could still be made to function with appropriate (fitted) values of B1 and B2 defined analogous to those of eqn. 1. It appears, therefore, that the algorithm is likely to be useful in virtually any situation in chromatography wherein retentions can be described as a function of the parameter(s) to be optimized.

Commands Indigenous to APPLE BASIC

The only three commands used here which may not be compatible with other versions of BASIC are PR#1, $PR#\emptyset$, and HOME. The first two of these specify the hard-copy printer and the display unit, respectively, while the third command causes the display to clear and the cursor to be positioned in the upper left-hand corner of the screen. These commands appear in the following statements:

Command	Statement Nos.	
PR#1	121ø, 191ø, 32ø5	
PR#Ø	1ø1ø, 135ø, 3ø1ø, 327ø	
HOME	1ø1ø, 111ø, 1165, 191ø, 3ø1ø, 3ø5ø, 321ø, 325ø, 33øø	

There may also be difficulty with multiple TAB statements depending upon the printer employed (here, an Epson $MX-7\emptyset$). We have found that substitution of POKE (36,nn) for TAB (nn) solves this problem.

ACKNOWLEDGMENT

We gratefully acknowledge support of this work provided by the Department of Energy.

REFERENCES

- 1. For example, see Biles, W. E., and Swain, J. J., Optimization and Industrial Experimentation, Wiley-Interscience, New York, 1980.
- 2. Laub, R. J., and Purnell, J. H., J. Chromatogr., 112, 71, 1975.
- See the review: Laub, R. J., in Physical Methods in Modern Chemical Analysis, Vol. 3, T. Kuwana, Ed., Academic Press, New York, 1983, Ch. 4.
- Laub, R. J., Program WINDOW, Technical Report DOE-ER-10554-19 Rev. 1 to the Department of Energy; Chemical Abstracts, 98, 78732h,

1983. See also: Laub, R. J., Purnell, J. H., and Williams, P. S., Anal. Chim. Acta, 95, 135, 1977.

- McCann, M., Purnell, J. H., and Wellington, C. A., in Chromatography, Equilibria, and Kinetics, Faraday Society Symposium No. 15, D. A. Young, Ed., The Royal Society of Chemistry, London, 1980, p. 82.
- Madden, S. J., McCann, M., Purnell, J. H., and Wellington, C. A., paper presented at the 184th National Meeting of the American Chemical Society, Kansas City, Missouri, 1982; Madden, S. J., Ph.D. Thesis, University College of Swansea, Swansea, Wales, 1983.
- Scott, R. P. W., and Kucera, P., Anal. Chem., 45, 749, 1973; J. Chromatogr. Sci., 12, 473, 1974; 13, 337, 1975; J. Chromatogr., 112, 425, 1975; 122, 35, 1976; 149, 93, 1978; 171, 37, 1979.
- 8. Jones, P., and Wellington, C. A., J. Chromatogr., 213, 357, 1981.
- 9. Purnell, J. H., J. Chem. Soc., 1268, 1960.
- 19. The window diagram strategy is of course completely general, and will therefore be useful in any situation wherein optimization of an independent (abscissa) system parameter is sought in terms of a dependent (ordinate) chromatographic, electrochemical, spectroscopic, or even purely mathematical variable: Laub, R. J., Am. Lab., 13(3), 47, 1981.
- 11. Maggs, R. J., J. Chromatogr. Sci., 7, 145, 1969.
- 12. Laub, R. J., and Purnell, J. H., J. Chromatogr., 161, 49, 1978.
- 13. Purnell, J. H., and Vargas de Andrade, J. M., J. Am. Chem. Soc., 97, 3585, 3590, 1975.
- 14. Laub, R. J., and Purnell, J. H., J. Am. Chem. Soc., 98, 30, 35, 1976.